Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra. | \(g_{-4}\) | \(-h_{3}+h_{1}\) | \(h_{4}\) | \(g_{4}\) | \(g_{14}\) | \(g_{8}\) | \(g_{11}\) | \(g_{13}\) | \(g_{3}\) | \(g_{7}\) | \(g_{10}\) | \(g_{1}\) | \(g_{15}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(\omega_{2}\) | \(\omega_{1}+\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-2\psi_{1}-2\psi_{2}\) | \(0\) | \(0\) | \(2\psi_{1}+2\psi_{2}\) | \(\omega_{1}-4\psi_{1}\) | \(\omega_{1}-2\psi_{2}\) | \(\omega_{1}+2\psi_{1}\) | \(\omega_{1}+4\psi_{1}+2\psi_{2}\) | \(\omega_{2}-4\psi_{1}-2\psi_{2}\) | \(\omega_{2}-2\psi_{1}\) | \(\omega_{2}+2\psi_{2}\) | \(\omega_{2}+4\psi_{1}\) | \(\omega_{1}+\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-2\psi_{1}-2\psi_{2}} \) → (0, 0, -2, -2) | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{2\psi_{1}+2\psi_{2}} \) → (0, 0, 2, 2) | \(\displaystyle V_{\omega_{1}-4\psi_{1}} \) → (1, 0, -4, 0) | \(\displaystyle V_{\omega_{1}-2\psi_{2}} \) → (1, 0, 0, -2) | \(\displaystyle V_{\omega_{1}+2\psi_{1}} \) → (1, 0, 2, 0) | \(\displaystyle V_{\omega_{1}+4\psi_{1}+2\psi_{2}} \) → (1, 0, 4, 2) | \(\displaystyle V_{\omega_{2}-4\psi_{1}-2\psi_{2}} \) → (0, 1, -4, -2) | \(\displaystyle V_{\omega_{2}-2\psi_{1}} \) → (0, 1, -2, 0) | \(\displaystyle V_{\omega_{2}+2\psi_{2}} \) → (0, 1, 0, 2) | \(\displaystyle V_{\omega_{2}+4\psi_{1}} \) → (0, 1, 4, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | |||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-2\psi_{1}-2\psi_{2}\) | \(0\) | \(2\psi_{1}+2\psi_{2}\) | \(\omega_{1}-4\psi_{1}\) \(-\omega_{1}+\omega_{2}-4\psi_{1}\) \(-\omega_{2}-4\psi_{1}\) | \(\omega_{1}-2\psi_{2}\) \(-\omega_{1}+\omega_{2}-2\psi_{2}\) \(-\omega_{2}-2\psi_{2}\) | \(\omega_{1}+2\psi_{1}\) \(-\omega_{1}+\omega_{2}+2\psi_{1}\) \(-\omega_{2}+2\psi_{1}\) | \(\omega_{1}+4\psi_{1}+2\psi_{2}\) \(-\omega_{1}+\omega_{2}+4\psi_{1}+2\psi_{2}\) \(-\omega_{2}+4\psi_{1}+2\psi_{2}\) | \(\omega_{2}-4\psi_{1}-2\psi_{2}\) \(\omega_{1}-\omega_{2}-4\psi_{1}-2\psi_{2}\) \(-\omega_{1}-4\psi_{1}-2\psi_{2}\) | \(\omega_{2}-2\psi_{1}\) \(\omega_{1}-\omega_{2}-2\psi_{1}\) \(-\omega_{1}-2\psi_{1}\) | \(\omega_{2}+2\psi_{2}\) \(\omega_{1}-\omega_{2}+2\psi_{2}\) \(-\omega_{1}+2\psi_{2}\) | \(\omega_{2}+4\psi_{1}\) \(\omega_{1}-\omega_{2}+4\psi_{1}\) \(-\omega_{1}+4\psi_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}}\oplus M_{-\omega_{1}+\omega_{2}-4\psi_{1}}\oplus M_{-\omega_{2}-4\psi_{1}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{2}}\oplus M_{-\omega_{2}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}}\oplus M_{-\omega_{2}+2\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{2}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-4\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}}\oplus M_{-\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+4\psi_{1}}\oplus M_{\omega_{1}-\omega_{2}+4\psi_{1}}\oplus M_{-\omega_{1}+4\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-4\psi_{1}}\oplus M_{-\omega_{1}+\omega_{2}-4\psi_{1}}\oplus M_{-\omega_{2}-4\psi_{1}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-2\psi_{2}}\oplus M_{-\omega_{2}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}}\oplus M_{-\omega_{1}+\omega_{2}+2\psi_{1}}\oplus M_{-\omega_{2}+2\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+4\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{2}+4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-4\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}-2\psi_{1}}\oplus M_{\omega_{1}-\omega_{2}-2\psi_{1}}\oplus M_{-\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{\omega_{2}+2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+2\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{2}+4\psi_{1}}\oplus M_{\omega_{1}-\omega_{2}+4\psi_{1}}\oplus M_{-\omega_{1}+4\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) |